DNN and CNN of Keras with MNIST Data in Python

We talked about some examples of CNN application with KeRas for Image Recognition and Quick Example of CNN with KeRas with Iris Data.
Actually, TensorFlow itself in Python is mature enough to conduct deep learning activities and KeRas is even faster and more simple to train with than TensorFlow only in deep learning activities.

You can find more details on Valentino Zocca, Gianmario Spacagna, Daniel Slater’s book Python Deep Learning.

############################
###DNN in TensorFlow Only###
############################

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

###1. Load data set, and split it if necessary 
mnist = input_data.read_data_sets("MNIST_data/")

###2. we create a holder, a container to place the computation activities in tensorflow
###identifying format and tensor's r/c, null means any kind
VISIBLE_NODES = 784
HIDDEN_NODES = 400
x = tf.placeholder("float", shape=[None, VISIBLE_NODES])
y = tf.placeholder("float", shape=[None, 10])

###3. We identify weights and biases with tensor shape, start with 0
weights = tf.Variable(tf.random_normal((VISIBLE_NODES, HIDDEN_NODES), 
	mean=0.0, stddev=1. / VISIBLE_NODES))
hidden_bias = tf.Variable(tf.zeros([HIDDEN_NODES]))
visible_bias = tf.Variable(tf.zeros([VISIBLE_NODES]))

###4. set up the sigmoid model and multiply x and W with matmul function, building the 
###hidden layer and reconstruction layer
hidden_activation = tf.nn.sigmoid(tf.matmul(x, weights) + hidden_bias)
visible_reconstruction = tf.nn.sigmoid(tf.matmul(hidden_activation, tf.transpose(weights)) 
	+ visible_bias)
final_hidden_activation = tf.nn.sigmoid(tf.matmul(visible_reconstruction, weights) 
	+ hidden_bias)

###5. This process can be understood as being two phases of learning
###positive and negative or, more poetically, waking and sleeping
positive_phase = tf.matmul(tf.transpose(x), hidden_activation)
negative_phase = tf.matmul(tf.transpose(visible_reconstruction), final_hidden_activation)
LEARNING_RATE = 0.01
weight_update = weights.assign_add(LEARNING_RATE * 
	(positive_phase - negative_phase))
visible_bias_update = visible_bias.assign_add(LEARNING_RATE *
	tf.reduce_mean(x - visible_reconstruction, 0))
hidden_bias_update = hidden_bias.assign_add(LEARNING_RATE *
	tf.reduce_mean(hidden_activation - final_hidden_activation, 0))
###6. Now we create the operations for scaling the hidden and visible biases, with loss 
###function feedback 
train_op = tf.group(weight_update, visible_bias_update, hidden_bias_update)
loss_op = tf.reduce_sum(tf.square(x - visible_reconstruction))

###7. We start the session
session = tf.Session()
session.run(tf.global_variables_initializer())
current_epochs = 0

###8.Run the session
for i in range(20):
    total_loss = 0
    while mnist.train.epochs_completed == current_epochs:
        batch_inputs, batch_labels = mnist.train.next_batch(100)
        _, reconstruction_loss = session.run([train_op, loss_op], feed_dict={input_placeholder: batch_inputs})
        total_loss += reconstruction_loss

    print("epochs %s loss %s" % (current_epochs, reconstruction_loss))
    current_epochs = mnist.train.epochs_completed

We only demonstrated the training process above. The following example is for KeRas.

##############################
###DNN in TensorFlow KeRas ###
##############################
###1. Load Data and Splot Data
from keras.datasets import mnist
from keras.models import Sequential 
from keras.layers.core import Dense, Activation
from keras.utils import np_utils

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

###2.Preprocess
X_train = X_train.reshape(60000, 784)     
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')     
X_test = X_test.astype('float32')     
X_train /= 255     
X_test /= 255
classes = 10
Y_train = np_utils.to_categorical(Y_train, classes)     
Y_test = np_utils.to_categorical(Y_test, classes)

###3. Set up parameters
input_size = 784
batch_size = 100     
hidden_neurons = 400     
epochs = 30

###4.Build the model
model = Sequential()     
model.add(Dense(hidden_neurons, input_dim=input_size)) 
model.add(Activation('relu'))     
model.add(Dense(classes, input_dim=hidden_neurons)) 
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy', 
	metrics=['accuracy'], optimizer='adadelta')
model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs, verbose=1)

###5.Test 
score = model.evaluate(X_test, Y_test, verbose=1)
print('\n''Test accuracy:', score[1]) 
#Test accuracy: 0.983

##############################
###CNN in TensorFlow KeRas ###
##############################

import numpy as np     
np.random.seed(0)  #for reproducibility            

from keras.datasets import mnist
from keras.models import Sequential 
from keras.layers import Dense, Activation
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Dropout, Flatten

from keras.utils import np_utils

input_size = 784
batch_size = 100     
hidden_neurons = 200
classes = 10     
epochs = 8

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 28, 28, 1)     
X_test = X_test.reshape(10000, 28, 28, 1)

X_train = X_train.astype('float32')     
X_test = X_test.astype('float32')     
X_train /= 255     
X_test /= 255

Y_train = np_utils.to_categorical(Y_train, classes)     
Y_test = np_utils.to_categorical(Y_test, classes)

model = Sequential() 
model.add(Convolution2D(32, (3, 3), input_shape=(28, 28, 1)))
model.add(Activation('relu'))
model.add(Convolution2D(32, (3, 3)))  
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25))  
               
model.add(Flatten())
 
model.add(Dense(hidden_neurons)) 
model.add(Activation('relu'))      
model.add(Dense(classes)) 
model.add(Activation('softmax'))
     

model.compile(loss='categorical_crossentropy', 
	metrics=['accuracy'], optimizer='adadelta')

model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs, 
	validation_split = 0.1, verbose=1)

score = model.evaluate(X_test, Y_test, verbose=1)
print('Test accuracy:', score[1]) 
#Test accuracy: 0.9906
Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s